
AUBG — Spring 2014 Sample State Exam B March 29, 2014

Problem 1. Multiple integrals. Area of a plane region. Change of variables in multiple

integrals.

Find the area of the region in the xy-plane bounded by the curve

(x2 + y2)2 = a2(x2 − y2),

where a > 0 is a parameter.

Solution:

Theoretical part:

Area is an example of measure just like length, or volume, or number of elements (cardinality) of a finite
set. What all these notions have in common are that we assign to certain sets nonnegative numbers
and this assignment is additive, namely the measure of the disjoint union of two sets is the sum of the
measures of the two sets. For finite cardinality this is simple but far from simple for length or its higher
dimensional analogues. The length of an interval [a, b], a ≤ b, in the real line is

length[a, b] = b− a .

A rectangle in the plane can be viewed as the product of two intervals [a, b]× [b, c] and its area is defined
as

area([a, b]× [c, d]) = length[a, b] · length[c, d]

and the volume of a box is

volume([a1, b1]× [a2, b2]× [a3, b3]) =

3
∏

i=1

length[ai, bi] .

The area of a set that is a disjoint union of rectangles is defined to be the sum of the areas of the
individual rectangles. Analogously for length, volume and more general measures. (We are not implying
that we are doing measure theory but just trying to build some intuition.) We have defined the measure
of “simple” sets that are finite unions of “elementary” sets like intervals, rectangles, or boxes using the
property of additivity. The idea is to try to make sence of the area or volume of a more complicated
set by approximating it with such “simple” sets.

An example of the above is the Riemann definition of the definite integral
� b

a
f(x) dx of a continuous

function f defined on the interval [a, b]. When f is nonnegative the definite integral
� b

a
f(x) dx is the

area of the region between by the x-axis and the graph of the function. This area is approximated by
a union of rectangles as follows. We choose some partition

P = {a = x0 < x1 < · · · < xn = b , }

choose points x∗i ∈ [xi−1, xi] and approximate the area region below the graph of f restriced to the
subinterval [xi−1, xi] by the area f(x∗i )∆ix of the rectangle with base the subinterval and height f(x∗i ),
where ∆ix = xi − xi−1 is the length of the i-th subinterval. Using the additivity property of any
measure an approximation to the area under the graph of f is the sum of the areas of these elementary
rectangles, i.e, the partial Riemann sum

n
∑

i=1

f(x∗i )∆ix .

Taking finer and finer partitons we could hope that we get better and better approximations to the
area we want to find. Thus we define
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� b

a

f(x) dx = lim
|P|→0

n
∑

i=1

f(x∗i )∆ix

where |P| = maxi |xi−xi−1| and the limit is taken over all possible partitions and choices of the starred
points.

Now we proceed to define double integrals. First we consider a continuous function of two variables
f(x, y) defined over a rectangle R = [a, b]× [b, c]. In analogy with the case of a function of one variable
we fist partition the intervals

P ′ = {a = x0 < x1 < · · · < xm = b}

and

P ′′ = {c = y0 < y1 < · · · < yn = d}

obtaining a partition P of the region R into elementary rectangles RP
ij = [xi−1, xi] × [yj−1, yj] having

area ∆ijA = ∆ix∆jy. Next choose points (x∗i , y
∗
j ) ∈ RP

ij . The volume of the region under the graph
and over the elementary rectangle RP

ij we approximate by the volume of a box with base RP
ij and height

f(x∗i , y
∗
j ), i.e.,

f(x∗i , y
∗
j )∆ix∆jy .

Summing these elementary volumes we will obtain an approximation

m
∑

i=1

n
∑

j=1

f(x∗i , y
∗
j )∆ijA

to the volume under the graph (again we have used the additivity property of measures). The final step
is to take a limit over partitions and choice of starred points as the partitions become finner and finner
obtaining the double integral

� �

R

f(x, y) dA .

We had assumed that f is positive in order to think of the integral as the volume of the solid under
the graph of f and the domain R = [a, b]× [b, c]. The definition above can be applied also to functions
that are not necessarily nonnegative but now we cannot interpret the integral as volume any more, it
is the volume for the regions of the domain where the function is positive minus the volume where the
function is negative. One can relax also the requirement that f is continuous to the requirement that f
is bounded and has discontinuities at most on smooth curves. The question of necessary and sufficient
conditions for integrability is a difficult one and will not be considered here.

Next let us mention the main properties of the double integral. Let us fix the region R and consider the
space C(R) of continuous functions from R to the real numbers. This is a vector space with addition
and scaling defined pointwise, i.e., if f, g ∈ C(R) and c is a real constant then

(f + g)(x, y) = f(x, y) + g(x, y) and (cf)(x, y) = c f(x, y) for all (x, y) ∈ R

and a partial order again defined poitwise

f ≤ g if f(x, y) ≤ g(x, y) for all (x, y) ∈ R .
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The double integral
��

R
. . . dA is a order-preserving linear map from C(R) to the reals, or more ex-

plicitly both

� �

R

(f + g) dA =

� �

R

f dA+

� �

R

g dA

� �

R

cf dA = c

� �

R

f dA

and

f ≤ g ⇒

� �

R

f dA ≤

� �

R

g dA

hold.

Calculating a double integral from the definition is difficult in most cases. Most often one reduces a
double integral to an iterated integral via the Fubini Theorem. Assume again that a continuous function
f is defined over a rectangular domain R = [a, b]× [b, c]. The idea is to slice the “solid under the graph”
into slices parallel to the yz-plane for each x ∈ [a, b]. If we can find the area A(x) of such a slice as
a function of x we can give the slice an infinitesimal thickness dx, hence the “elementary volume” of
such a slice will be A(x) dx, and finally to “sum”, i.e., integrate over x. We have secretly used Fubini’s
Theorem when we did “volumes by discs” in Calculus I. E.g., if a solid is obtained by rotating a region
in the xy-plane around the x-axis and we slice this solid by planes perpendicular to the axis of rotation.

Now we will formulate the theorem of Fubini but will not prove it. Fix x ∈ [a, b] and view f(x, y)
as a function [c, d] ∋ y 7→ f(x, y) ∈ R. Integrating this function over y ∈ [c, d] we obtain A(x) =
� d

c
f(x, y) dy, function of x ∈ [a, b]. (To save parenthesis in iterated integrals let us write the differential

next to the integral sign.) Taking the integral of this function we obtain

� b

a

dxA(x) =

� b

a

dx

� d

c

dy f(x, y)

with the l.h.s called the iterated integral where first we integrate over y and then over x. Similarly we
can “slice” the volume by planes parallel to the xz-axis and obtain the iterated integral where first we
integrate over x and then over y:

� b

a

dxA(x) =

� d

c

dy

� b

a

dx f(x, y) .

Double integrals and iterated integrals are related by the following theorem.

Theorem (Fubini). Assume f is a continuous real valued function defined on the rectangular domain
R = [a, b]× [b, c], then

� �

R

f(x, y) dA =

� b

a

dx

� d

c

dy f(x, y) =

� d

c

dy

� b

a

dx f(x, y)

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite
number of smooth curves, and the iterated integrals exist.

Now we move to a more general case when f is defined over a domain D which is more general that a
rectangular domain but we assume that it is bounded so can be embedded in a rectangle, i.e. D ⊂ R.
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We can extend f to a function F defined on all of R by assigning the value 0 to points that are in R
but not in D. It is intuitively clear that the integral of f over D will be the same as the integral of F
over R. (As part of the linearity of integration we have that if a function is zero its integral is zero so
we will have that F integrated over R\D is zero.)

Assume that f is defined on (a type-I region as they are called in the textbook)

D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

where g1 and g2 are continuous on [a, b]. By the Extreme Value Theorem g1 attains its minimum and
g2 attains its maximum. Let c = minx∈[a,b] g1(x) and d = maxx∈[a,b] g2(x). Then D ⊂ R = [a, b]× [c, d].
Extending f by zero outside of D to obtain F defined on R. As argued above we have

� �

D

f(x, y) dA =

� �

R

F (x, y) dA =

� b

a

dx

� d

c

dy F (x, y)

and since F (x, y) is zero if y /∈ [g1(x), g2(x)], x ∈ [a, b] we obtain

� d

c

dy F (x, y) =

� g2(x)

g1(x)

dy F (x, y) =

� g2(x)

g1(x)

dy f(x, y)

hence finally we obtain

� �

D

f(x, y) dA =

� b

a

dx

� g2(x)

g1(x)

dy f(x, y)

when we apply the Theorem of Fubini. Simillarly if the region is given by (is of type-II as they are
called in the textbook)

D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

we have that

� �

D

f(x, y) dA =

� d

c

dy

� h2(y)

h1(y)

dx f(x, y)

holds.

The properties of the integral over more general domains D are similar to the properties mentioned
above. The double integral

� �

D
. . . dA is an order-preserving linear map from C(D) to the reals. If

we fix f but vary the domain then the double itegral is additive, i.e.,

� �

D

f(x, y) dA =

� �

D1

f(x, y) dA+

� �

D2

f(x, y) dA

where D = D1 ∪D2 while D1 ∩D2 is at most a one dimensional curve. We also have that

� �

D

1 dA = A(D)

the integrating the function 1 we obtain the area of the domain. And finally if m ≤ f(x, y) ≤ M for
(x, y) ∈ D we have

mA(D) ≤

� �

D

f(x, y) dA ≤ M A(D) .
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Next we will discuss change of variables in multiple integrals. Again let us restrict our attention to
functions of two variables. Assume we have a transformation

T : (u, v) 7→ (x, y)

of the plane, or a subset of the plane, to the plane, or to some subset of the plane. We will assume that
T is one-to-one and differentiable and maps a region S in the uv-plane onto a region R in the xy-plane.
Denoting the composition of T followed by the projections on x or y by g(u, v) = (projx ◦ T )(u, v) and
h(u, v) = (projy ◦ T )(u, v) we write the transformation also as

T : (u, v) 7→ (x = g(u, v), y = h(u, v)) .

From Linear Algebra we know that the determinant in 2, 3, etc, dimensions is area, volume, generalized
volume. More precisely a transformation maps the “square” determined by the unit vectors to a
“parallelogram” the determined by their transforms (and the higher dimesnional analogues for dimension
bigger then 2) and the determinant of the transformation measures the scale by which the area of the
“square” has to to be multiplied by to obtain the area of the “parallelogram”. Passing to small differences
in the coordinates we have

∆x∆y =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

∆u∆v

where the Jacobian of the transformation is

∂(x, y)

∂(u, v)
= det







∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v







and for differentials we get

dAx,y =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dAu,v .

In the particular case of changing from Cartesian to polar coordinates

x = r cos θ and y = r sin θ

the Jacobian is |∂(x, y)/∂(r, θ)| = r and the above becomes

dx dy = r dr dθ .

Suppose that T is a differentiable transformation whose Jacobian is nonzero and one that maps a region
S in the uv-plane onto a region R in the xy-plane. Suppose that the function f is continuous on R and
that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on
the boundary of S. Then

� �

R

f(x, y) dAx,y =

� �

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dAu,v .

For the particullar problem we have to pass to polar coordinates and there the region is of the type

S = {(r, θ)|θ1 ≤ θ ≤ θ2 and 0 ≤ a(θ) ≤ r ≤ b(θ)}
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for some given functions a(θ) and b(θ). Applying the theorem of Fubini we will get

� �

R

f(x, y) dAx,y =

� �

S

f(x(r, θ), y(r, θ)) r dr dθ =

� θ2

θ1

dθ

� b(θ)

a(θ)

f(x(r, θ), y(r, θ)) r dr .
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Solution. Practical part:

The curve looks simpler when rewritten in polar coordinates x = r cos θ, y = r sin θ. We have x2+y2 = r2

while x2 − y2 = r2(cos2 θ − sin2 θ) = r2 cos 2θ so the curve becomes

(r/b)2 = cos 2θ θ ∈ [−π/4, π/4] ∪ [3π/4, 5π/4]

and it is usefull to sketch it. It looks like a 2-petal flower

where for this picture we have taken the value b2 = 3.

Denote the region in question by A and the region of the left petal by Aleft . We have

Aleft = {(r, θ) : (r/b)2 = cos 2θ for θ ∈ [−π/4, π/4]} .

Due to the symmetry we have A = area(A) = 2 area(Aleft ). To find the area A/2 of of the left petals
we write it as a double integral change to polar coordinates (including the Jacobian) and use Fubini’s
theorem obtaining

A

2
=

� �

Aleft

dx dy

=

� �

Aleft

rdr dθ

=

�

π/4

−π/4

dθ

� b
√
cos 2θ

0

rdr

=

�

π/4

−π/4

dθ
r2

2
|b
√
cos 2θ

0

=
b2

2

�

π/4

−π/4

cos 2θ dθ

=
b2

4
sin θ|

π/2
−π/2

=
b2

2

hence A = b2.
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Problem 2. Power series. Radius and interval of convergence. Term-by-term differen-

tiation and integration. Let

u(x) = 1 +
x3

3!
+
x6

6!
+ · · · =

∞
∑

n=0

x3n

(3n)!
,

v(x) = x+
x4

4!
+
x7

7!
+ · · · =

∞
∑

n=0

x3n+1

(3n+ 1)!
,

w(x) =
x2

2!
+
x5

5!
+
x8

8!
+ · · · =

∞
∑

n=0

x3n+2

(3n+ 2)!
.

Prove that u3 + v3 + w3 − 3uvw = 1.

Solution:

Power series. A series of the form ∞
∑

n=0

cn(x− a)n

where cn ∈ R for all n ∈ Z≥0 and a ∈ R is called a power series in (x− a), or a power series centered
at a or a power series about a.

Radius and interval of convergence.

Theorem 1. [Convergence of power series]

For a given power series
∞
∑

n=0

cn(x− a)n there are exactly three possibilities:

(1) The series converges only when x = a.

(2) The series converges for all x ∈ R.

(3) There is a positive number R ∈ R such that the series converges if |x − a| < R and diverges if
|x− a| > R.

Definition. The number R in case (3) of the above theorem is called the radius of convergence of the
power series. By convention, the radius of convergence is R = 0 in case (1) and R = ∞ in case (2).
The interval of convergence of a power series is the interval that consists of all values of x for which the
series converges.

Remark. In case (1) the interval consists of just a single point a. In case (2) the interval is (−∞,∞).
In case (3) the interval of convergence could be (a− R, a+R), or (a− R, a+R], or [a−R, a+R), or
[a− R, a+R], depending on the converges of the power series at the endpoints of the interval.

Term-by-term differentiation and integration. The sum of a power series is a function

f(x) =

∞
∑

n=0

cn(x− a)n

whose domain is the interval of convergence of the series. To differentiate and integrate such functions,
the following theorem is usually applied.
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Theorem 2. [Differentiation and integration of power series]

If the power series
∞
∑

n=0

cn(x− a)n has radius of convergence R, then the function f(x) defined by

f(x) = c0 + c1(x− a) + · · ·+ cn(x− a)n + · · · =

∞
∑

n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a− R, a+R) and

(i)
d

dx
(f(x)) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · ·+ ncn(x− a)n−1 + · · · =

∞
∑

n=0

ncn(x− a)n−1 ;

(ii)
�

f(x) dx = C+c0(x−a)+
c1
2
(x−a)2+ c2

3
(x−a)3+· · ·+ cn

n+1
(x−a)n+1+· · · = C+

∞
∑

n=0

cn
n+1

(x−a)n+1,

where C ∈ R is a constant.

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Solution of the given problem. For the given power series applying the Ratio Test, we get

(u)

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

=

∣

∣

∣

∣

x3(n+1)/(3(n+ 1))!

x3n/(3n)!

∣

∣

∣

∣

=

∣

∣

∣

∣

x3

(3n+ 1)(3n+ 2)3(n+ 1)

∣

∣

∣

∣

−→ 0 < 1 for all x ∈ R;

(v)

∣

∣

∣

∣

vn+1

vn

∣

∣

∣

∣

=

∣

∣

∣

∣

x3n+4/(3n+ 4)!

x3n+1/(3n+ 1)!

∣

∣

∣

∣

=

∣

∣

∣

∣

x3

(3n+ 2)(3n+ 3)(3n+ 4)

∣

∣

∣

∣

−→ 0 < 1 for all x ∈ R;

(w)

∣

∣

∣

∣

wn+1

wn

∣

∣

∣

∣

=

∣

∣

∣

∣

x3n+5/(3n+ 5)!

x3n+2/(3n+ 2)!

∣

∣

∣

∣

=

∣

∣

∣

∣

x3

(3n + 3)(3n+ 4)(3n+ 5)

∣

∣

∣

∣

−→ 0 < 1 for all x ∈ R.

(Here we use the convention un =
x3n

(3n)!
, vn =

x3n+1

(3n+ 1)!
, and wn =

x3n+2

(3n+ 2)!
.) Thus, by the Ratio

Test, we conclude that each of the above series has radius of convergence ∞, i.e., the domain of each of
the functions u(x), v(x), and w(x) is (−∞,∞) ≡ R.

Further, applying Theorem 2 stated above, we obtain

(u) u′(x) =
d

dx

(

∑∞
n=0

x3n

(3n)!

)

=
d

dx

(

1 + x3

3!
+ x6

6!
+ · · ·

)

= x2

2!
+ x5

5!
+ x8

8!
+ · · · =

∑∞
n=0

x3n+2

(3n+2)!
= w(x);

(v) v′(x) =
d

dx

(

∑∞
n=0

x3n+1

(3n+1)!

)

=
d

dx

(

x+ x4

4!
+ x7

7!
+ · · ·

)

= 1 + x3

3!
+ x6

6!
+ · · · =

∑∞
n=0

x3n

(3n)!
= u(x);

(w) w′(x) =
d

dx

(

∑∞
n=0

x3n+2

(3n+2)!

)

=
d

dx

(

x2

2!
+ x5

5!
+ x8

8!
+ · · ·

)

= x+ x4

4!
+ x7

7!
+ · · · =

∑∞
n=0

x3n+1

(3n+1)!
= v(x).

Take Φ(x) := u3 + v3 + w3 − 3uvw − 1. Then

d

dx
(Φ(x)) =

d

dx

(

u3 + v3 + w3 − 3uvw − 1
)

=

= 3u′u2 + 3v′v2 + 3w′w2 − 3u′vw − 3v′uw − 3w′uv =

= 3wu2 + 3uv2 + 3vw2 − 3wvw − 3uuw − 3vuv ≡ 0 ,

and since Φ(x)| x=0 = 1 + 0 + 0 − 0 − 1 = 0, we obtain by the Fundamental Theorem of Calculus that
Φ(x) ≡ 0, or equivalently

u3 + v3 + w3 − 3uvw = 1 .

9



AUBG — Spring 2014 Sample State Exam B March 29, 2014

Problem 3. First order ordinary differential equations. Exact equations- General solu-

tions. Integrating factors.

Euler’s theorem for homogeneous functions says that if F = F (x, y) is a homogeneous function of degree
k in x and y, then

x
dF

dx
+ y

dF

dy
= kF.

Use Euler’s theorem to prove that if M and N are homogeneous functions of the same degree, then
1

Mx+My
is an integrating factor for the equation Mdx+Ndy = 0, provided that Mx+Ny 6= 0. Use this

result to solve the equation
y2dx+ x(x+ y)dy = 0.

Solution: Let us consider the first order differential equation

dy

dx
= f(x, y). (1)

Theorem 1. If the function f(x, y) and its partial derivative ∂f
∂y

are continuous on an open rectangle

x0 − a < x < x0 + a, y0 − b < y < y0 + b, then there exist an open interval I = (x0 − h, x0 + h) and a
function y = ϕ(x) which is defined and differentiable on I, such that:

(a) The function y = ϕ(x) is a solution of (1).

(b) One has y0 = ϕ(x0).

(c) The solution y = ϕ(x) which satisfies (a) and (b) is locally unique (that is, two functions y = ϕ(x)
and y = ψ(x), defined and differentiable of some open intervals I and J , respectively, that contain x0,
coincide on the intersection I ∩ J).

Any first order differential equation can be written in the symmetric form

M(x, y)dx+N(x, y)dy = 0, (2)

where M = M(x, y) and N = N(x, y) are functions in two variables x and y. The equation (2) is said
to be exact if its left hand side is a total differential, that is, there exists a function H = H(x, y) such
that

∂H

∂x
=M, (3)

∂H

∂y
= N. (4)

Then the general solution of (2) is H(x, y) = C.

Theorem 2. The necessary and sufficient condition for the equation (2) to be exact is

∂M

∂y
=
∂N

∂x
. (5)

Proof. The condition (5) is necessary because

∂M

∂y
=

∂2H

∂x∂y
=
∂N

∂x
.

Now, let us suppose that (5) holds. We are looking for a function H that satisfies (3) and (4). From (3)
we obtain

H(x, y) =

�

M(x, y)dx+ ϕ(y)

10
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and then

N(x, y) =
∂H

∂y
=

�

∂M(x, y)

∂y
dx+ ϕ′(y) =

�

∂N(x, y)

∂x
dx+ ϕ′(y) = N(x, y)− f(y) + ϕ′(y).

Finally, we find ϕ(y) from the equation ϕ′(y) = f(y).

Ah integrating factor for the differential equation (2) is a function v = v(x, y) such that the equation

vMdx+ vNdy = 0 (6)

is exact. The condition (5), applied for the equation (5), implies that v is an integrating factor if and
only if

v(
∂M

∂y
−
∂N

∂x
) = N

∂v

∂x
−M

∂v

∂y
. (7)

Case 1. v=v(x).

In this case the condition (7) becomes

v′

v
=

∂M
∂y

− ∂N
∂x

N
= ϕ(x),

hence

v = exp(

�

ϕ(x)dx.

Case 2. v=v(y).

In this case the condition (7) becomes

v′

v
= −

∂M
∂y

− ∂N
∂x

M
= ψ(y),

hence

v = exp(

�

ψ(y)dy).

Euler’s theorem for homogeneous functions says that if F = F (x, y) is a homogeneous function of degree
k in x and y, then

x
∂F

∂x
+ y

∂F

∂y
= kF.

Use Euler’s theorem to prove that if M and N are homogeneous functions of the same degree, then
1

xM+yN
is an integrating factor for the equation Mdx+Ndy = 0, provided that xM + yN 6= 0. Use this

result to solve the equation
y2dx+ x(x+ y)dy = 0.

Solution:

We will prove that the differential equation

M

xM + yN
dx+

N

xM + yN
dy = 0

is exact, that is,
∂( M

xM+yN
)

∂y
=
∂( N

xM+yN
)

∂x
.

11
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We have
∂( M

xM+yN
)

∂y
=

−MN + yN ∂M
∂y

− yM ∂N
∂y

(xM + yN)2
,

∂( N
xM+yN

)

∂x
=

−MN + xM ∂N
∂x

− xN ∂M
∂x

(xM + yN)2
,

and it is enough to show that

yN
∂M

∂y
− yM

∂N

∂y
= xM

∂N

∂x
− xN

∂M

∂x
.

The last identity is a direct consequence of Euler’s theorem applied for the homogeneous functions M
and N of the same degree.

In particular, if M = y2 and N = x2 + xy, then xM + yN = 2xy2 + x2y = xy(x + 2y) and in accord
with the above statement, the equation

y2

xy(x+ 2y)
dx+

x(x+ y)

xy(x+ 2y)
dy = 0,

that is, the equation
y

x(x+ 2y)
dx+

x+ y

y(x+ 2y)
dy = 0,

is exact in a neighbourhood of the point (x, y), such that x 6= 0, y 6= 0, and x+2y 6= 0. In other words,
there exists function H = H(x, y) such that

∂H

∂x
=

y

x(x+ 2y)

and
∂H

∂y
=

x+ y

y(x+ 2y)
.

Then we have

H =

�

y

x(x+ 2y)
dx+ ϕ(y) =

1

2

�

(
1

x
−

1

x+ 2y
)dx+ ϕ(y) =

1

2
ln |x| −

1

2
ln |x+ 2y|+ ϕ(y).

On the other hand,
x+ y

y(x+ 2y)
=
∂H

∂y
= −

1

x+ 2y
+ ϕ′(y)

and we have

ϕ′(y) =
x+ y

y(x+ 2y)
+

1

x+ 2y
=

1

y
,

ϕ(y) = ln |y|,

and
1

2
ln |x| −

1

2
ln |x+ 2y|+ ln |y| = C

is the general solution.
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Problem 4. Spectral theorem for symmetric operators in Euclideal spaces. Matrices of

a symmetric operator. Eigenvalues and eigenvectors of a symmetric operator. Spectral

base of a symmetric operator.

Let A and B be two symmetric n× n matrices with real entries which commute, i.e. AB = BA. Prove
that they can be diagonalized simultaneously by the same ortogonal transformation, i.e. there exists an
orthogonal matrix T , such that both matrices T−1AT and T−1BT are diagonal.

Solution:
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