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1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze
Theorem. Intermediate Value Theorem. Extreme Value Theorem.

Definition 1.1 (Precise definition of a limit) Let a ∈ R, let I be an open interval which contains a
and let f be a real function defined everywhere except possibly at a. Then f is said to converge to L as x
approaches a if for every ε > 0 there is a δ > 0 (which in general depends on ε, f, I and a) such that

0 < |x− a| < δ implies |f(x)− L| < ε.

In this case we write
L = lim

x→a
f(x) or f(x) −→ L as x −→ a

and call L the limit of f(x) as x approaches a.

The limit laws are listed in the following theorem.

Theorem 1.1 Suppose that a ∈ R, I is an open interval which contains a and that f, g are real function
defined everywhere except possibly at a. Suppose that the limits limx→a f(x) and limx→a g(x) exist. Then

1. limx→a[f(x) + g(x)] = limx→a f(x) + limx→a g(x)

2. limx→a cf(x) = c limx→a f(x)

3. limx→a[f(x)g(x)] = limx→a f(x). limx→a g(x)

Assume furthermore that the limit of g is nonzero, then

4. limx→a[ f(x)g(x) ] = limx→a f(x)
limx→a g(x) .

Proof. Suppose limx→a f(x) = L and limx→a g(x) = M .

We shall proof part 1. We have to show that for every ε > 0 there is a δ > 0 such that

0 < |x− a| < δ implies |f(x) + g(x)− (L+M)| < ε. (1)

Let ε > 0. It follows from the hypothesis that there exists a δ1 > 0, such that

0 < |x− a| < δ1 implies |f(x)− L| < ε

2
. (2)

Similarly, there is a δ2 > 0, such that

0 < |x− a| < δ2 implies |g(x)−M | < ε

2
. (3)



Denote δ = min{δ1, δ2} and let 0 < |x− a| < δ. Consider the following:

|f(x) + g(x)− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |(f(x)− L)|+ |(g(x)−M)| : by the triangle inequality

<
ε

2
+
ε

2
= ε : by (2) and (3) .

We have shown that (1) is in force. Therefore, by the definition of a limit,

lim
x→a

[f(x) + g(x)] = L+M,

which proves part 1. of the theorem.

Part 2. There is nothing to prove if c = 0. Assume c 6= 0. Then given ε > 0, one can choose δ > 0, such that

0 < |x− a| < δ implies |f(x)− L| < ε

|c|
.

Clearly, then for |x− a| < δ one has

|cf(x)− cL| ≤ |c||f(x)− L| < |c| ε
|c|

= ε,

which proves part 2 of the theorem.

Parts 3. and 4. involve slightly more sophisticated argument and computation.

Theorem 1.2 Suppose f(x) ≤ g(x) for all x in an open interval I which contains a, except possibly at a.
If limx→a f(x) = L and limx→a g(x) = M then L ≤M.

Theorem 1.3 (Squeeze Theorem for Functions) Suppose that a ∈ R, that I is an open interval which
contains a and that f, g, h are real function defined everywhere except possibly at a. If

f(x) ≤ h(x) ≤ g(x) for all x ∈ I \ {a} and lim
x→a

f(x) = lim
x→a

g(x) = L

then the limit of h(x) exists, as x −→ a and

lim
x→a

h(x) = L.

Definition 1.2 Let E be a nonempty subset of R, and f : E −→ R

(i) f is said to be continuous at a point a ∈ E if given ε > 0 there exists a δ > 0 (which in general depends
on ε, f , and a) such that

0 < |x− a| < δ and x ∈ E imply |f(x)− L| < ε.

(ii) f is said to be continuous on E (notation:f : E −→ R is continuous) if f is continuous at every x ∈ E.

Theorem 1.4 If f and g are defined on a nonempty subset E of R and continuous at a ∈ E (respectively,
continuous on the set E) then so are f + g, fg and cf , for any c ∈ R. If, in addition, f/g is continuous at
a ∈ E, when g(a) 6= 0 (respectively, on E when g(x) 6= 0, ∀x ∈ E).

Theorem 1.5 Suppose f is continuous at b and limx→a g(x) = b. Then limx→a f(g(x)) = f(b).



Theorem 1.6 (Intermediate Value Theorem) Suppose that a < b and that f : [a, b] −→ R is continu-
ous. If y0 lies between f(a) and f(b) then there exists an x0 ∈ (a, b) such that f(x0) = y0.

Definition 1.3 Suppose f is a function with domain D. We say that f has an absolute maximum at c ∈ D
if f(c) ≥ f(x) for all x ∈ D. f has an absolute minimum at d ∈ D if f(d) ≤ f(x) for all x ∈ D. The
number M = f(c) is called the maximum value of f on D, and m = f(d) is called the minimum value of f
on D.

Theorem 1.7 (Extreme Value Theorem) If f is continuous on a closed interval [a, b] then f attains an
absolute maximum value M = f(c) and an absolute minimum value m = f(d) at some points c, d ∈ [a, b].

Remark. You may find sketch of proofs of the theorems in [1], Appendix F.

1.2 Problem 1

A function f is defined by

f(x) = lim
n→∞

x2n − 1

x2n + 1
.

(a) Where is f continuous?

(b) Where is f discontinuous?

Solution.

Firstly we find f explicitly on its domain. There are three cases which we study separately. Case 1. |x| = 1,
Case 2. |x| > 1, and Case 3. |x| < 1.

It is clear that
f(1) = f(−1) = 0 (4)

The following equalities hold:

x2n − 1

x2n + 1
=
x2n + 1− 2

x2n + 1
=
x2n + 1

x2n + 1
− 2

x2n + 1
= 1− 2

x2n + 1
.

Hence
f = 1− lim

n→∞

2

x2n + 1
(5)

Note that for every fixed x ∈ R we have to find the limit of the infinite sequence

{xn =
2

x2n + 1
}n∈N.

Case 2. |x| > 1. In this case limn→∞ x2n =∞, hence

lim
n→∞

2

x2n + 1
= 0. (6)

Combine this equation with (5) to obtain:

f = 1− lim
n→∞

2

x2n + 1
= 1− 0 = 1,

and therefore
f(x) = 1,∀x with |x| > 1. (7)



Case 3. |x| < 1. Then limn→∞ x2n = 0, and

lim
n→∞

2

x2n + 1
=

2

(limn→∞ x2n) + 1
=

2

0 + 1
= 2. (8)

Hence
f = 1− lim

n→∞

2

x2n + 1
= 1− 2 = −1.

We have found that

f(x) =

 1 if |x| > 1
0 if |x| = 1
−1 if |x| < 1.

It is clear that f is defined on R. Furthermore, f = 1 on (−∞,−1)
⋃

(1,∞), and f = −1 on (−1, 1), hence
f is continuous on R \ {1,−1}.

It follows from

−1 = lim
x→1−

f(x) 6= lim
x→1+

f(x) = 1, and 1 = lim
x→−1−

f(x) 6= lim
x→−1+

f(x) = −1

that f is discontinuous at 1,−1.

The graph of f is given below.
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2.1 Linear Transformations. Matrices of a linear transformation. Similarity.
Kernel and Range. Rank and nullity. Eigenvalues and eigenvectors. Diag-
onalization.

We shall consider vector spaces over a fixed field F , for example, F = R, or F = C.

Let V and W be vector spaces over the field F . A linear transformation T : V −→ W is a map which is
compatible with the addition and scalar multiplication:

T (u+ v) = T (u) + T (v), and T (cu) = cT (u) for all u, v ∈ V, and all c ∈ F.



It follows from the definition that a linear transformation is compatible with all linear combinations:

T (
∑
i

civi) =
∑
i

ciT (vi)

Let T : V −→W be a linear transformation. Two subspaces are associated with T , the kernel of T , denoted
kerT and the image of T denoted imT . These are defined as

kerT = {v ∈ V | T (v) = 0}

im T = {w ∈W | w = T (v) for some v ∈ V }.
(9)

The image of T is also called range of T .

Example 2.1 (Left Multiplication by a Matrix) Let A be an m × n matrix with entries in F . Then
the map

TA : Fn −→ Fm which sends X 7→ AX

is a linear transformation. Moreover kerTA = Nul A, (the nullspace of A) and im T = ColA (the column
space of A).

By convention from now on we shall consider only finite dimensional vector spaces.

The following is in force:

Theorem 2.1 (Dimension Formula) Let T : V −→ W be a linear transformation of finite dimensional
vector spaces. Then

dimV = dim(kerT ) + dim(imT ) (10)

Remark 1 If A is an n×m matrix and T is the left multiplication on A the equality (10) can be written as

n = rankA+ nullityA, (11)

where nullity of A is the dimension of its null space, and rank A is the dimension of its column space.

As usual, {e1, · · · , en} denote the standard basis of the n-space Fn.

It is easy to show that every linear transformation T : Fn −→ Fm is left multiplication by some m×n matrix.

Indeed, consider the images T (ej) of the standard bases vectors in the space Fm. Each vector T (ej) is in
Fm and has the shape

T (ej) =


a1j
a2j
...

amj

 ,
so we form a matrix A = ‖aij‖, having these vectors as its columns. In other words written in terms
of columns A has the shape A = [T (e1) T (e2) · · · T (en)]. Suppose X = (x1, · · · , xn)t ∈ Fn then X =
x1e1 + x2e2 + · · ·xnen. Computing the product AX one obtains

AX = [T (e1) T (e2) · · · T (en)]


x1
x2
...
xn


= x1T (e1) + x2T (e2) + · · ·+ xnT (en)
= T (x1e1 + x2e2 + · · ·+ xnen)
= T (X),



where the second equality follows from the definition of multiplication of a matrix by a vector, and the third
follows from linearity of T . We have proven the following lemma

Lemma 2.2 Let T : Fn −→ Fm be a linear transformation between the n-space and the m-space of column
vectors. Suppose the coordinate vector of T (ej) in Fm is Aj = (a1j , · · · amj)

t. Let A = AT be the m × n
matrix whose columns are the vectors A1, · · · , An. Then T acts on vectors in Fn as left multiplication by A.

This statement can be generalized for arbitrary linear transformation T : V −→ W of finite dimensional
vector spaces and arbitrary bases of V and W .

Let B= {v1, · · · vn} and C= {w1, · · ·wn} be bases of V and W , respectively. Denote

T (B) = {T (v1), · · · , T (vn)}.

The vectors in the set T (B) are in the space W . We express each vector T (vj) as a linear combination of
the basis C and denote by Aj = T (vj)C the column vector with components these coordinates. Consider
the m×n matrix A = AT (B,C) with columns Aj . Let X be an arbitrary vector in V , it is represented by
unique n-dimensional column vector XB = (x1, · · · , xn)t with components the coordinates of X with respect
to the basis B. Then one has

AXB = [A1 A2 · · · An]XB = x1A1 + · · ·+ xnAn =
∑
j

xjT (vj) = T (
∑
j

xjvj) = T (X).

The m×n matrix A = AT (B,C) is called the matrix of T with respect to the bases B, C.

Any linear transformation T : V −→ W between finite dimensional vector spaces can be identified with a
matrix multiplication, once bases for these spaces are fixed.

A linear transformation T : V −→ V is called a linear operator. Clearly the matrix A = AT (B) of the
operator T with respect to a basis B has size n× n

Theorem 2.3 Let T : V −→ V be a linear operator. Suppose A is the matrix of T with respect to a basis B
of V . The matrices A′ which represent T for different bases are those of the form

A′ = PAP−1,

for arbitrary P ∈ GLn(F )

Here GLn(F ) denotes the group of n×n invertible matrices.

We say that an n×n matrices A is similar to B if

A = PBP−1

for some P ∈ GLn(F ).

Eigenvalues and eigenvectors. Diagonalization

Let T : V −→ V be a linear operator. An eigenvector v for T is a nonzero vector v ∈ V such that

T (v) = λv

for some scalar λ ∈ F.In this case λ is called the eigenvalue of T associated to the eigenvector v.

By definition an eigenvector for an n × n matrix A is a vector v ∈ Fn which is an eigenvector for the left
multiplication by A, that is

Av = λv for some λ ∈ F.



The scalar λ is called an eigenvalue of A.

Suppose A is an n× n matrix, let v be an eigenvector of A with associated eigenvalue λ. Then Av = λv or
equivalently Av = (λI)v, hence

(A− λI)v = 0.

Here I is the n× n identity matrix, and 0 is the zero vector. It follows that the eigenvector v is a nonzero
solution of the matrix equation

(A− λI)X = 0.

Recall that a matrix equation BX = 0, where B is an n× n matrix, X ∈ Fn has a nonzero solution v ∈ Fn

iff detB = 0. It follows then that det(A− λI) = 0. Note that

PA(λ) = det(A− λI) ∈ F [λ]

is a polynomial of degree n in λ.

Definition 2.1 The characteristic polynomial of an n× n matrix A is the polynomial

PA(λ) = det(A− λI).

Note that two similar matrices have the same characteristic polynomials. Indeed, the characteristic polyno-
mial of the matrix PAP−1 satisfies

det(PAP−1 − λI) = det(PAP−1 − P (λI)P−1)
= det(P (A− λI)P−1)
= det(P ) det(A− λI) det(P−1)
= det(A− λI)
= PA(λ).

Hence the characteristic polynomial of an operator is well defined by the following

Definition 2.2 The characteristic polynomial of a linear operator T is the polynomial PA(λ) = det(A−λI),
where A is the matrix of T with respect to any basis.

The statement below follows from the fact that similar matrices represent the same linear operator.

Corollary 2.4 Similar matrices have the same eigenvalues.

Proposition 2.5 The characteristic polynomial of an operator T does not depend on the choice of a basis.

Corollary 2.6 (a) The eigenvalues of an n× n matrix A are the roots of its characteristic polynomial.

(b) The eigenvalues of a linear operator are the roots of its characteristic polynomial.

Lemma 2.7 Suppose A is an n × n matrix and λ1, · · · , λs ∈ F are pairwise distinct eigenvalues of A.
let B = {v1, · · · vs} be a set of eigenvectors associated with {λi}. Then B is a linearly independent set of
eigenvectors. Moreover, if A has n distinct eigenvalues, then each set B = {v1, · · · vn} of corresponding
eigenvectors is a basis of Fn.

Suppose now A is an n × n matrix which has n linearly independent eigenvectors v1, · · · , vn ∈ Fn, let
λ1, · · · , λn be the associated eigenvalues (λi = λj for some i 6= j is also possible). Consider the matrix P
with columns v1, · · · , vn and the n × n diagonal matrix Λ = diag(λ1, λ2, · · · , λn) with entries Λii = λi on
the diagonal. There are equalities

AP = A[v1 · · · vn] = [Av1 · · · Avn] = [λ1v1 · · · λnvn] = [v1 · · · vn]Λ = PΛ



The columns of P are linearly independent, so the matrix P is invertible. We have shown that

AP = PΛ, A = PΛP−1

so A is similar to a diagonal matrix Λ.

The matrix P is called an eigenvector matrix of A and Λ is the corresponding eigenvalue matrix.

Definition 2.3 We say that the n× n matrix A is diagonalizable if it is similar to a diagonal matrix D.

Note that if T is a linear operator which has n linearly independent eigenvectors v1, · · · vn ∈ Fn, then the
matrix of T with respect to the eigenvector basis {v1, · · · , vn} is exactly the eigenvalue diagonal matrix Λ.

Theorem 2.8 The matrix A of a linear operator T is similar to a diagonal matrix if and only if there exists
a basis B′ = {v′1, · · · v′n} of V which consists of eigenvectors.

2.2 Problem 2

Let A be a non-zero square matrix of size n× n, such that

A3 = 9A.

1. Describe explicitly the set of all possible eigenvalues of A.

2. Describe explicitly all possible values of detA.

3. Give three examples of matrices A (not all diagonal) of size 3× 3, such that A3 = 9A.

Solution

Case 1. We shall assume first that F is a field of characteristic 0 or F has positive characteristic p > 2, 3.

1. Suppose λ is an eigenvalue of A, and let v be an eigenvector corresponding to the eigenvalue λ. It
follows from Av = λv that

A3v = A2(Av) = A2(λv) = λ(A2v) = λ2Av = λ3v.

This together with A3 = 9A imply

A3v = λ3v = 9Av = 9λv,

hence (λ3 − 9λ)v = 0. As an eigenvector, the vector v can not be zero, hence

λ3 − 9λ = 0.

It follows that λ is a root of the polynomal x3 − 9x = x(x− 3)(x+ 3), hence

λ ∈ {0, 3, −3}.

2. We shall now find all possible values of detA. Suppose that A is a matrix of size n× n.
It follows from A3 = 9A that det(A3) = det(9A). Now the properties of the determinant function
imply:

det(A3) = det[A.A.A] = (det(A))3, det(9A) = 9n det(A) = (3n)2 det(A).



It follows then that
(det(A))3 − (3n)2 det(A) = 0

Hence det(A) is the root of the polynomial

x3 − (3n)2x = x(x− 3n)(x+ 3n) ∈ F [x],

so
det(A) ∈ {0, 3n, −3n}.

3. We shall construct infinitely many matrices of size 2× 2 such that A3 = A. Note that

(A2 = 9I) =⇒ (A3 = 9A).

We shall describe the upper triangular 2×2 matrices A =

[
a b
0 c

]
, with A2 = 9I. Direct computation

of A2 yields [
a b
0 c

]
.

[
a b
0 c

]
=

[
a2 (a+ c)b
0 c2

]
=

[
9 0
0 9

]
Hence,

a2 = c2 = 9, and either b = 0, or b 6= 0, a = −c.

Straightforward computation verifies that each of the matrices

A =

[
3 b
0 −3

]
, B =

[
−3 b

0 3

]
, E =

[
ε 0
0 δ

]
, where b ∈ F, ε, δ ∈ {1,−1}

satisfies A2 = 9I, and therefore A3 = 9A.

The number of these matrices depends on the cardinality of F . If F is an infinite field (of characteristic
6= 3 then there are infinitely many such matrices.

Remark 2 We have shown that the equation X2−9I = 0 has infinitely many roots in the F -algebra of 2×2
matrices whenever the field F is infinite and has characteristic 6= 3.

Case 2. F is a field of characteristic 2. Then A3 = 9A is equivalent to A3 = A. Note that −1 = 1 is an
equality in F . Then each eigenvalue λ satisfies λ3 − λ = 0, hence λ ∈ {0, 1}. det(A3) = (detA)3 = detA, so

detA ∈ {0, 1}. The matrices A =

[
1 b
0 1

]
, where b ∈ F satisfy A2 = I, hence A3 = A. The cardinality of

the set of all such matrices is exactly the cardinality of F . In the particular case when F = F2, the prime

field with two elements, there are only two matrices A with A2 = I, namely
[

1 1
0 1

]
,

[
1 0
0 1

]
.

Case 3. Assume now that F has characteristic 3. Then A3 = 9A =

[
0 0
0 0

]
. This implies that A3v =

λ3v = 0, for each eigenvector corresponding to eigenvalue λ. Hence λ = 0. Clearly, 0 = det(A3) = (det(A))3,
hence det(A) = 0. The matrices

A =

[
0 b
0 0

]
, b ∈ F

satisfy

A3 = A2 =

[
0 0
0 0

]
.
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3.1 Ordinary Differential Equations- Linear Equations. Existence and Unique-
ness Theorem. Non-homogeneous Equations- Method of Undeterminate
Coefficients.

A differential equation of the form

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = b(x) (12)

is said to be linear differential equation of order n. The functions ai(x), i = 0, . . . , n, are called coeffi-
cients of (12) and the function b(x) is called free coefficient. In case b(x) = 0, the equation (12) is called
homogeneous:

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = 0 (13)

Since the sum y1 + y2 of two solutions y1 and y2 of (13) is also a solution of (13) and since the product cy
of a solution y with a real number c is again a solution of (13), we obtain that the set Y of all solutions of
the equation (13) is a linear space. If y0 is a particular solution of (12) and if y ∈ Y is the general solution
of the corresponding homogeneous equation (13), then z = y0 + y is the general solution of (12).

There are three principal problems that have to be solved:

1. Existence and (under certain conditions) uniqueness of the solution.

2. Description of the general solution of the homogeneous equation (13).

3. Finding a particular solution of (12).

Problem (a) is solved by the following theorem.

When the functions ai(x), i = 0, . . . , n, b(x), are continuous on an open interval I and a0(x) 6= 0 for all
x ∈ I, the equation is said to be normal on I. After division by a0(x), any normal equation can be written
in the form

dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = b(x). (14)

and the corresponding homogeneous equation is

dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = 0. (15)

Theorem 3.1 Let the equation (12) be normal on the interval I and let x0 ∈ I. Then for any sequence of
constants c0, c1, . . . , cn−1 there exists a unique solution y = y(x) of (12), such that

y(x0) = c0, y
′(x0) = c1, y

′′(x0) = c2, . . . , y
(n−1)(x0) = cn−1.

Theorem (3.1) yields immediately the following:

Corollary 3.2 The map
Y → R, y 7→ (y(x0), y′(x0), y′′(x0), y(n−1)(x0))

is an isomorphism of linear spaces.



In accord with Corollary 3.2, the solution of Problem (b) reduces to finding a basis for the n-dimensional
linear space Y . Any basis of Y is called fundamental system of solutions of the equation (13).

For the solution of Problem (c) we suppose that a fundamental system of solutions y1, y2, . . . , yn of the
equation (13) is known. In this case, using Lagrange method of undetermined coefficients, we can solve
Problem (c) up to evaluating certain integrals.

Below, for simplicity, we present Lagrange method for n = 3. Thus, we have the equation

d3y

dx3
+ a1(x)

d2y

dx2
+ a2(x)

dy

dx
+ a3(x)y = b(x) (16)

and we are looking for a solution of (16) in the form

y(x) = u1(x)y1(x) + u2(x)y2(x) + u3(x)y3(x). (17)

Then
y′(x) = u′1(x)y1(x) + u′2(x)y2(x) + u′3(x)y3(x) + u1(x)y′1(x) + u2(x)y′2(x) + u3(x)y′3(x)

and we force the functions u1, u2, u3 to satisfy the equation

u′1(x)y1(x) + u′2(x)y2(x) + u′3(x)y3(x) = 0.

Under the last condition, we have

y′(x) = u1(x)y′1(x) + u2(x)y′2(x) + u3(x)y′3(x), (18)

differentiate (18) and obtain

y′′(x) = u′1(x)y′1(x) + u′2(x)y′2(x) + u′3(x)y′3(x) + u1(x)y′′1 (x) + u2(x)y′′2 (x) + u3(x)y′′3 (x).

After forcing u1, u2, u3 to satisfy the equation

u′1(x)y′1(x) + u′2(x)y′2(x) + u′3(x)y′3(x) = 0,

we have
y′′(x) = u1(x)y′′1 (x) + u2(x)y′′2 (x) + u3(x)y′′3 (x). (19)

Finally, we have

y′′′(x) = u′1(x)y′′1 (x) + u′2(x)y′′2 (x) + u′′3(x)y′3(x) + u1(x)y′′′1 (x) + u2(x)y′′′2 (x) + u3(x)y′′′3 (x). (20)

We multiply (17) by a3(x), (18) by a2(x), (19) by a1(x) and add the result to (20). Since y1, y2, and y3 are
solutions of the corresponding homogeneous equation, we obtain

u′1(x)y′′1 (x) + u′2(x)y′′2 (x) + u′3(x)y′′3 (x) = b(x).

Thus, we have the linear system ∣∣∣∣∣∣
y1u
′
1 + y2u

′
2 + y3u

′
3 = 0

y′1u
′
1 + y′2u

′
2 + y′3u

′
3 = 0

y′′1u
′
1 + y′′2u

′
2 + y′′3u

′
3 = b(x).

Its determinantW = W (x) is the Wronskian of the fundamental system of solutions y1, y2, y3, henceW (x) 6=
0 for all x ∈ I and Cramer’s formulae yield u′1(x) = ϕ1(x), u′2(x) = ϕ2(x), and u′3(x) = ϕ3(x), where ϕi’s
are certain functions in x. Therefore

u1(x) =

∫
ϕ1(x)d x, u2(x) =

∫
ϕ2(x)d x, u3(x) =

∫
ϕ3(x)d x.

We apply this method for finding a particular solution of the equation below.



3.2 Problem 3

Solve the differential equation:
x′′(t) + β2x(t) = cosβt, (21)

where t is time and β > 0, subject to initial condition

x(0) = x0, x′(0) = v0. (22)

Show that the solution x(t) of the above equation assumes values that are greater than any given positive
constant when t −→∞.

Solution

The corresponding homogeneous equation is

x′′(t) + β2x(t) = 0 (23)

and the corresponding auxiliary equation is

m2 + β2 = 0 (24)

with imaginary roots m1,2 = ±βi. The general solution of (23) is x(t) = K1 cosβt+K2 sinβt, where K1,K2

are real numbers. Thus, a fundamental system of solutions is y1 = cosβt and y2 = sinβt. The Wronskian is∣∣∣∣ cosβt sinβt
−β sinβt β cosβt

∣∣∣∣ = β.

We will find a particular solution of (21) by using the above Lagrange method. We set x(t) = u1(t) cosβt+
u2(t) sinβt and the corresponding linear system for the derivatives u′1 = u′1(t), u′2 = u′2(t) is∣∣∣∣ (cosβt)u′1 + (sinβt)u′2 = 0

(−β sinβt)u′1 + (β cosβt)u′2 = cosβt

Cramer’s formulae imply

u′1(t) =
1

β

∣∣∣∣ 0 sinβt
cosβt β cosβt

∣∣∣∣ = − 1

β
sinβt cosβt

and
u′2(t) =

∣∣∣∣ cosβt 0
−β sinβt cosβt

∣∣∣∣ =
1

β
cos2 βt.

Therefore,

u1(t) = − 1

β

∫
sinβt cosβtd t = − 1

β2

∫
sinβtd (sinβt) = − 1

2β2
sin2 βt,

u2(t) =
1

β

∫
cos2 βtd t =

1

2β

∫
(1− cos 2βt)d t =

1

2β
(t− 1

2β
sin 2βt).

Thus, a particular solution of (21) is

xp(t) = − 1

2β2
sin2 βt cosβt+

1

2β
(t− 1

2β
sin 2βt) sinβt.

Therefore the general solution of (21) is

x(t) = xp(t) +K1 cosβt+K2 sinβt.



It is easy to check that xp(0) = 0, and x′p(0) = 0. Then, in accord with (22), x0 = x(0) = K1, v0 = x′(0) =
K2β, hence

x(t) = xp(t) + x0 cosβt+
v0
β

sinβt.

Let (tn)∞n=1 be the sequence of real numbers, found from the relations

βtn =
π

4
+ 2nπ.

Then limn→∞ tn =∞, sinβtn = cosβtn =
√
2
2 , and sin 2βtn = 1, so

x(tn) = xp(tn) +

√
2x0
2

+

√
2v0
2β

=

√
2x0
2

+

√
2v0
2β

−
√

2

4β2
+

√
2

4β
tn.

In particular, limn→∞ x(tn) =∞.

4

4.1 Conditional distributions and conditional expectations: general concepts.
The Chebishev’s inequality: statement and proof.

Answers to questions 4.

To give their answers students can use the material of the course MAT 201: Mathematical Statistics; text-
book: R. Hogg and A. Craig, Introduction to Mathematical Statistics, 5th ed., Prentice-Hall International,
Inc. (1995) (all references below are from this textbook).

1. Conditional distributions and conditional expectations.

Although Section 2.2 is entirely devoted to this topic, it is preferable to consider first the general case of
n random variables X1, X2, ..., Xn and define f2,..,n|1(x2, ..., xn | x1) and E(u(X2, ..., Xn) | x1), for a given
deterministic function u(x2, ..., xn); see p.110. Then, you can return to the case n = 2, studied in detail in
Section 2.2. You have to prove that ∫ ∞

−∞
f2|1(x2 | x1)dx2 = 1

and derive the formula for P (a < X2 < b | X1 = x1) (see p. 84). Define the conditional variance var(X2 | x1)
and derive its alternative formula given on p. 85. Explain the concept of E(X2 | X1) as a random variable
(p. 86). You have to include also the following two central facts:

E[E(X2 | X1)] = E(X2),

var(E(X2 | X1) ≤ var(X2), Rao-Blackwell’s inequality.

Proofs in a particular case are given on p. 88-89.

2. Chebyshev’s inequality.

This material is contained in Section 1.10. Prove first Markov’s inequality: if u(x) ≥ 0 is given real function
and X is a random variable such that E[u(X)] exists, then, for any c > 0,

Pr[u(X) ≥ c] ≤ E[u(X)]

c

(see p. 68). Then, setting u(X) = (X − E(X))2, derive Chebyshev’s inequality. It is good to notice that
Chebishev’s inequality is very general (valid for any random variable X). It gives sometimes very crude (not
precise) bounds. There are, however, random variables for which Chebyshev’s inequality is sharp (becomes
an equality). Examples are appreciated (see p. 69, 70).



4.2 Problem 4.

4.1. Let X and Y have the joiny p.d.f. f(x, y) = 3x, 0 < y < x < 1, zero elsewhere. Are X and Y
independent? If not, find E(X|y).

4.2. If X is a random variable such that E(X) = 3, and E(X2) = 13 use Chebishev’s inequality to determine
a lower bound for the probability Pr(−2 < X < 8).

Solution of Problem 4.1.

X and Y are dependent since the space of (X,Y ) is not a product space (see Example 2 on p. 103). For
0 < y < 1, the marginal pdf f1(y) of Y is

f1(y) =

∫ ∞
−∞

f(x, y)dx = 3

∫ 1

y

xdx =
3

2
(1− y2).

Next,

f(x | y) =
f(x, y)

f1(y)
=

2x

1− y2
, 0 < y < x < 1;

E(X | y) =

∫ ∞
−∞

xf(x | y) =

∫ 1

y

2x2

1− y2
dx =

2(1− y3)

3(1− y2)
=

2(1 + y + y2)

3(1 + y)
, 0 < y < 1.

Solution of Problem 4.2.

The variance of X is σ2 = E(X2)− E2(X) = 13− 9 = 4. Hence σ = 2 and µ = E(X) = 3. We have

P (−2 < X < 8) = P (−5 < X − 3 < 5) = P (| X − µ |< 5).

Let us choose the number k, so that kσ = 5, that is, 2k = 5 or k = 5/2. Then, by Chebyshev’s inequality,

P (| X − 3 |< (5/2)σ) ≥ 1− 1

(5/2)2
= 1− 4

25
=

21

25
.
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