AUBG — Spring 2014 Sample State Exam B March 29, 2014

Problem 1. Multiple integrals. Area of a plane region. Change of variables in multiple
integrals.

Find the area of the region in the xy-plane bounded by the curve
(2% +y?)* = a*(2® — ¢?),
where a > 0 1s a parameter.

Solution:
Theoretical part:

Area is an example of measure just like length, or volume, or number of elements (cardinality) of a finite
set. What all these notions have in common are that we assign to certain sets nonnegative numbers
and this assignment is additive, namely the measure of the disjoint union of two sets is the sum of the
measures of the two sets. For finite cardinality this is simple but far from simple for length or its higher
dimensional analogues. The length of an interval [a, ], a < b, in the real line is

lengthla,b] =b—a.

A rectangle in the plane can be viewed as the product of two intervals [a, b] X [b, ¢| and its area is defined
as

area([a, b] X [c,d]) = length|a, b] - length][c, d]

and the volume of a box is

3
volume([ay, by] X [ag, bo] X [as, b3]) = Hlength[ai, b .

i=1

The area of a set that is a disjoint union of rectangles is defined to be the sum of the areas of the
individual rectangles. Analogously for length, volume and more general measures. (We are not implying
that we are doing measure theory but just trying to build some intuition.) We have defined the measure
of “simple” sets that are finite unions of “elementary” sets like intervals, rectangles, or boxes using the
property of additivity. The idea is to try to make sence of the area or volume of a more complicated
set by approximating it with such “simple” sets.

An example of the above is the Riemann definition of the definite integral fab f(z)dzx of a continuous
function f defined on the interval [a,b]. When f is nonnegative the definite integral fab f(x)dx is the

area of the region between by the x-axis and the graph of the function. This area is approximated by
a union of rectangles as follows. We choose some partition

P={a=x<z1<---<x,=0,}

choose points z} € [z;_1, ;] and approximate the area region below the graph of f restriced to the
subinterval [x;_;, x;] by the area f(z}) A;x of the rectangle with base the subinterval and height f(z}),
where A;x = x; — ;1 is the length of the i-th subinterval. Using the additivity property of any
measure an approximation to the area under the graph of f is the sum of the areas of these elementary
rectangles, i.e, the partial Riemann sum

Taking finer and finer partitons we could hope that we get better and better approximations to the
area we want to find. Thus we define
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|P|—0

b n
/ f(x)dz = lim Zf(xZ)Aix

where |P| = max; |z; —x;—| and the limit is taken over all possible partitions and choices of the starred
points.

Now we proceed to define double integrals. First we consider a continuous function of two variables
f(z,y) defined over a rectangle R = [a,b] X [b, ¢|]. In analogy with the case of a function of one variable
we fist partition the intervals

P=la=xy<z1 < < Ty =0>}

and

P={c=y<y < - <yp,=d}

obtaining a partition P of the region R into elementary rectangles RZ = [wi_1, 2] X [y;—1,y;] having
area AjjA = Ajv Ajy. Next choose points (77, y7) € RZ The volume of the region under the graph
and over the elementary rectangle RZ-; we approximate by the volume of a box with base RZ; and height

flaiy5), Le,

fai,y7) A Ay
Summing these elementary volumes we will obtain an approximation

m n

DS F@ ) AyA

i=1 j=1

to the volume under the graph (again we have used the additivity property of measures). The final step
is to take a limit over partitions and choice of starred points as the partitions become finner and finner

obtaining the double integral
/ / flx,y)dA.
R

We had assumed that f is positive in order to think of the integral as the volume of the solid under
the graph of f and the domain R = [a, b] X [b, ¢]. The definition above can be applied also to functions
that are not necessarily nonnegative but now we cannot interpret the integral as volume any more, it
is the volume for the regions of the domain where the function is positive minus the volume where the
function is negative. One can relax also the requirement that f is continuous to the requirement that f
is bounded and has discontinuities at most on smooth curves. The question of necessary and sufficient
conditions for integrability is a difficult one and will not be considered here.

Next let us mention the main properties of the double integral. Let us fix the region R and consider the
space C(R) of continuous functions from R to the real numbers. This is a vector space with addition
and scaling defined pointwise, i.e., if f,g € C(R) and c is a real constant then

(f+9)(x,y) = f(x,y) + g(z,y) and (cf)(x,y) = c f(z,y) for all (z,y) € R

and a partial order again defined poitwise

f<gif f(z,y) < g(z,y) for all (z,y) € R.

2
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The double integral [/ g -+ AAis a order-preserving linear map from C(R) to the reals, or more ex-

plicitly both
//R(f+g)dA = //RfdA—l—//RgdA
//RcfdA - c/RfdA

and

f<g = //RfdAg//RgdA
hold.

Calculating a double integral from the definition is difficult in most cases. Most often one reduces a
double integral to an iterated integral via the Fubini Theorem. Assume again that a continuous function
f is defined over a rectangular domain R = [a, b] X [b, ¢|]. The idea is to slice the “solid under the graph”
into slices parallel to the yz-plane for each = € [a,b]. If we can find the area A(x) of such a slice as
a function of x we can give the slice an infinitesimal thickness dx, hence the “elementary volume” of
such a slice will be A(z) dz, and finally to “sum”, i.e., integrate over x. We have secretly used Fubini’s
Theorem when we did “volumes by discs” in Calculus I. E.g., if a solid is obtained by rotating a region
in the xy-plane around the z-axis and we slice this solid by planes perpendicular to the axis of rotation.

Now we will formulate the theorem of Fubini but will not prove it. Fix x € [a,b] and view f(z,y)
as a function [¢,d] 5 y — f(z,y) € R. Integrating this function over y € [c,d] we obtain A(x) =

fcd f(z,y) dy, function of x € [a, b]. (To save parenthesis in iterated integrals let us write the differential
next to the integral sign.) Taking the integral of this function we obtain

/abdxA(x):/abdx /Cddyf(a:,y)

with the L.h.s called the iterated integral where first we integrate over y and then over z. Similarly we
can “slice” the volume by planes parallel to the xz-axis and obtain the iterated integral where first we
integrate over x and then over y:

/da:A /dy/dxfify

Double integrals and iterated integrals are related by the following theorem.

Theorem (Fubini). Assume f is a continuous real valued function defined on the rectangular domain
R =[a,b] x [b,c|, then

//R f(f’y)dAZ/abdx /Cddyf(x,y):/Cddy /abdxf(x,y)

More generally, this is true if we assume that f is bounded on R, [ is discontinuous only on a finite
number of smooth curves, and the iterated integrals exist.

Now we move to a more general case when f is defined over a domain D which is more general that a
rectangular domain but we assume that it is bounded so can be embedded in a rectangle, i.e. D C R.

3
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We can extend f to a function F' defined on all of R by assigning the value 0 to points that are in R
but not in D. It is intuitively clear that the integral of f over D will be the same as the integral of F
over R. (As part of the linearity of integration we have that if a function is zero its integral is zero so
we will have that F' integrated over R\D is zero.)

Assume that f is defined on (a type-I region as they are called in the textbook)

D ={(z,y)la <z <b, gi(z) <y < go(w)}

where ¢g; and go are continuous on [a,b]. By the Extreme Value Theorem g; attains its minimum and
go attains its maximum. Let ¢ = mingepp 91(2) and d = max,cpa 4 g2(2). Then D C R = [a,b] X [c, d].
Extending f by zero outside of D to obtain F' defined on R. As argued above we have

//D f(:c,y)dA://R F(x,y)dA:/abdx /cddyF(x,y)

and since F(x,y) is zero if y ¢ [g1(x), g2(2)], = € [a,b] we obtain

d g2(x) g2(x)
/ dyF(x,y)Z/ dyF(x,y)Z/ dy f(x,y)
c g

1(x) g91(w)

hence finally we obtain

[] twmaa= [ da / f:)dyﬂx,y)

when we apply the Theorem of Fubini. Simillarly if the region is given by (is of type-II as they are
called in the textbook)

D={(z,y)c<y<d hi(y) <z < ha(y)}

d ha(y)
// f(fc,y)dAZ/ dy/ dz f(z,y)
D c hi(y)
holds.

The properties of the integral over more general domains D are similar to the properties mentioned
above. The double integral [ [, ... dA is an order-preserving linear map from C(D) to the reals. If
we fix f but vary the domain then the double itegral is additive, i.e.,

//D f(x’wdA:/ . f(%y)dAJr/ N f(z,y)dA

where D = D{ U Dy while D; N D, is at most a one dimensional curve. We also have that

//D 1dA = A(D)

the integrating the function 1 we obtain the area of the domain. And finally if m < f(z,y) < M for
(z,y) € D we have

we have that

mA(D)S//D flz,y)dA< M A(D).
4
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Next we will discuss change of variables in multiple integrals. Again let us restrict our attention to
functions of two variables. Assume we have a transformation

T: (u,v) — (x,y)

of the plane, or a subset of the plane, to the plane, or to some subset of the plane. We will assume that
T is one-to-one and differentiable and maps a region S in the uv-plane onto a region R in the zy-plane.
Denoting the composition of 1" followed by the projections on x or y by g(u,v) = (proj, o T')(u,v) and
h(u,v) = (proj, o T')(u,v) we write the transformation also as

T: (u,v) = (x = g(u,v), y = h(u,v)) .

From Linear Algebra we know that the determinant in 2, 3, etc, dimensions is area, volume, generalized
volume. More precisely a transformation maps the “square” determined by the unit vectors to a
“parallelogram” the determined by their transforms (and the higher dimesnional analogues for dimension
bigger then 2) and the determinant of the transformation measures the scale by which the area of the
“square” has to to be multiplied by to obtain the area of the “parallelogram”. Passing to small differences
in the coordinates we have

oz, y)
Az Ay = Au A
o 'aw,v)‘ o
where the Jacobian of the transformation is
oz, y) or Oz
vy _ ou v
oo | 8 &
ou Ov
and for differentials we get
(z,y)
A, = |—"| dA, ..
Ay 'O(u,v) dAu

In the particular case of changing from Cartesian to polar coordinates

x=r7rcosf and y = r sin6

the Jacobian is |0(z,y)/0(r,0)| = r and the above becomes

drdy =rdrdf.

Suppose that T is a differentiable transformation whose Jacobian is nonzero and one that maps a region
S in the uv-plane onto a region R in the xy-plane. Suppose that the function f is continuous on R and
that R and S are type I or type II plane regions. Suppose also that 7" is one-to-one, except perhaps on
the boundary of S. Then

[ semann, = [ [ st w522

For the particullar problem we have to pass to polar coordinates and there the region is of the type

U,

S ={(r,0)6, <0< 6 and 0 < a(f) <r < b0)}
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for some given functions a(f) and b(6). Applying the theorem of Fubini we will get

//R flx,y)dA,, = //s f(z(r,0), y(r,0)) rdrdd = /9102 de /a:j) Fla(r,0), y(r,0)) rdr.



AUBG — Spring 2014 Sample State Exam B March 29, 2014

Solution. Practical part:

The curve looks simpler when rewritten in polar coordinates x = r cos 8, y = rsin§. We have 2%+4y? = r?
while 22 — 32 = r?(cos? § — sin? ) = 12 cos 20 so the curve becomes

(r/b)? = cos20 0 € [—7/1,7/a] U [37/a, 57/4]

and it is usefull to sketch it. It looks like a 2-petal flower

S 0=m/4

N

w2 + y2)2 — 3($2 _ y2)

—_—

where for this picture we have taken the value b? = 3.

Denote the region in question by A and the region of the left petal by Aleft . We have
Apegt = {(r,0): (r/b)? = cos20 for 0 € [~/ 7]}

Due to the symmetry we have A = area(A) = 2area(Aj.g ). To find the area A/2 of of the left petals
we write it as a double integral change to polar coordinates (including the Jacobian) and use Fubini’s

theorem obtaining
= / / dx dy
Aeft

= // rdr do
A

left

/4 bv/cos 260
= / de / rdr
—7/4 0

_ /'”/4 de T2 b/ cos 20

v i

‘rr/4 2 0

b2 /4
= — / cos 20 df
_7r/4

= — sin 9[/73/2

hence A = b2,
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Problem 2. Power series. Radius and interval of convergence. Term-by-term differen-
tiation and integration. Let

$3 .CL’G x $3n
B T
ue) =145+ g+ ;(:m)!’
() +x4+1.7+ 1.3n+1
vE)=r+—+ = =
AT B+ 1)
2 b 8 0 Bn+2
(R TR D Y ]

Prove that u?® + v> + w? — 3uvw = 1.

Solution:

Power series. A series of the form
o0
E cn(x —a)®
n=0

where ¢, € R for all n € Z>q and a € R is called a power series in (x — a), or a power series centered
at a or a power series about a.

Radius and interval of convergence.

Theorem 1. [Convergence of power series/

o
For a given power series Y, c,(x — a)™ there are exactly three possibilities:
n=0

(1) The series converges only when x = a.
(2) The series converges for all x € R.

(8) There is a positive number R € R such that the series converges if |x — a| < R and diverges if
|z —a| > R.

Definition. The number R in case (3) of the above theorem is called the radius of convergence of the
power series. By convention, the radius of convergence is R = 0 in case (1) and R = oo in case (2).
The interval of convergence of a power series is the interval that consists of all values of x for which the
series converges.

Remark. In case (1) the interval consists of just a single point a. In case (2) the interval is (—oo, 00).
In case (3) the interval of convergence could be (a — R,a+ R), or (a — R,a+ R, or [a — R,a + R), or
[a — R,a + R], depending on the converges of the power series at the endpoints of the interval.

Term-by-term differentiation and integration. The sum of a power series is a function

fl@)=) culz—a)"

whose domain is the interval of convergence of the series. To differentiate and integrate such functions,
the following theorem is usually applied.
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Theorem 2. [Differentiation and integration of power series]
If the power series Y, ¢,(x — a)™ has radius of convergence R, then the function f(x) defined by

n=0

flz)=co+c(x—a)+--+cu(z—a)" ch:):—a

is differentiable (and therefore continuous) on the interval (a — R,a + R) and

(i) % (f(z)) =c1 4 2c2(x — a) + 3es(z — a)2 + -+ nep(r — a)”—l o= ijoncn(x _ a)n—l :
() [ 52)de = )+ 3@ af 4 Gl oot ooty =04 S ooyt

where C € R is a constant.
The radii of convergence of the power series in Equations (i) and (i) are both R.

Solution of the given problem. For the given power series applying the Ratio Test, we get

PO /(3 + 1) 3

Un41 x
= = 0 <1 for all R;
O s 757/ (3n)! ‘ ‘(371 +1)(3n +2)3(n + 1)‘ - orat T e
3n+4 3
Unt1 "/ (3n 4 4)! x
= = — 0 < 1 for all R;
S el e e T e 1] Rl v s Y gy oralve R
3n+5 3
Wpi1 " /(3n + 5)! x
= = — 0 < 1 for all R.
) | T | E 2 Gn )|~ B 3G DEn 1) orafve
(Here we use the convention o o and o ) Thus, by the Ratio
re we u vention u, = ——, v, = ———, w, = ———. us, ati
(3n)! Bn+1)! (B3 + 2)! Y

Test, we conclude that each of the above series has radius of convergence oo, i.e., the domain of each of
the functions u(x), v(z), and w(x) is (—oo,00) = R.

Further, applying Theorem 2 stated above, we obtain

d d :1,‘3 506 ,CCZ ,CCS :1,‘8 0 x3”+2
(W d_< ) d_<1+§+ﬁ+"'>:W+E+§+'“=anom=w($);
d 3n+1 d x3 xG o x3n
(v) %( n0(3n+1>_%<l’+4,+7,+ >:1+§+E+"':Zn:omzu@);
d 37L+2 d T x4 x,? 3n+1
(W %( n= 0(3n+2 >:%<2_+ 5| _I_ 8' + ):l’—‘—ﬁ—l—ﬁ—l—. —Zn 0(3n+1) —’U(:L’)
Take ®(z) := u® 4+ v® + w?® — 3uvw — 1. Then

d d
p (P(x)) = e (v +v° + w® — Buvw — 1) =
= 3u'u? + 3v"v? + 3w'w? — 3uvw — 3vuw — 3w'uv =
= 3wu® + 3uv? + 3vw? — 3wvw — Juuw — 3vuw =0,
and since ®();,—0 = 1+0+0—0—1 =0, we obtain by the Fundamental Theorem of Calculus that
®(x) =0, or equivalently
u? 4+ v+ w? — 3uvw = 1.
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Problem 3. First order ordinary differential equations. Exact equations- General solu-
tions. Integrating factors.

FEuler’s theorem for homogeneous functions says that if F = F(x,y) is a homogeneous function of degree

k in x and vy, then

oF o
r— +y— =kF.
[y oy

Use FEuler’s theorem to prove that if M and N are homogeneous functions of the same degree, then
MmiMy is an integrating factor for the equation Mdx + Ndy = 0, provided that Mx + Ny # 0. Use this
result to solve the equation

yidx + x(x +y)dy = 0.

Solution: Let us consider the first order differential equation

Yt (1)

Theorem 1. If the function f(x,y) and its partial derivative % are continuous on an open rectangle
ro—a<xz<z9+ta,y—b<y<yy+b, then there exist an open interval I = (xg — h,xo+ h) and a
function y = p(x) which is defined and differentiable on I, such that:

(a) The function y = p(x) is a solution of (1).

(b) One has yo = ¢(x0).

(¢) The solution y = @(x) which satisfies (a) and (b) is locally unique (that is, two functions y = p(x)
and y = ¢¥(x), defined and differentiable of some open intervals I and J, respectively, that contain x,
coincide on the intersection I N J).

Any first order differential equation can be written in the symmetric form
M (z,y)dc + N(z,y)dy = 0, (2)

where M = M(z,y) and N = N(z,y) are functions in two variables x and y. The equation (2) is said
to be exact if its left hand side is a total differential, that is, there exists a function H = H(x,y) such

that
OH

=M, (3)
OH
o =N (4)

Then the general solution of (2) is H(z,y) = C.
Theorem 2. The necessary and sufficient condition for the equation (2) to be exact is
M N
% )
Proof. The condition (5) is necessary because
oM _ o' _oN
oy  O0xdy  Ox

Now, let us suppose that (5) holds. We are looking for a function H that satisfies (3) and (4). From (3)
we obtain

H(x,y) = /M(:&y)dr +¢(y)

10
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and then

N(z.y) OH / OM (z,y) ON (z,vy)

=5, = ey ch;+go’(y):/7ctc+<p’(y)ZN(I,y)—f(y)w’(y)-

Finally, we find ¢(y) from the equation ¢'(y) = f(y).
0

Ah integrating factor for the differential equation (2) is a function v = v(x,y) such that the equation
vMdr + vNdy = 0 (6)

is exact. The condition (5), applied for the equation (5), implies that v is an integrating factor if and

only if
oM  ON v Jv
"y ") = Nar Moy )

Case 1. v=v(x).

In this case the condition (7) becomes

hence

Case 2. v=v(y).

In this case the condition (7) becomes

oM ON

/ == ==L

<

hence

o= cap( [ o))

Euler’s theorem for homogeneous functions says that if ' = F'(x,y) is a homogeneous function of degree

k in z and y, then
oF or
* ox +y oy
Use Euler’s theorem to prove that if M and N are homogeneous functions of the same degree, then
- Min is an integrating factor for the equation Mdx + Ndy = 0, provided that M +yN # 0. Use this
result to solve the equation

EF.

yidx + x(x +y)dy = 0.
Solution:

We will prove that the differential equation

M N
dr +
M +yN M +yN

dy=0

is exact, that is,

Izinw) _ Gy

dy ox

11
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We have y - N
Oxttw) _ —MN +yNGE —yM5]
8<xM]in) _ —MN +:17M%—J¥ _ $N%

ox (I'M +yN)2 ’
and it is enough to show that
N— —yM— =aM— —asN—

The last identity is a direct consequence of Euler’s theorem applied for the homogeneous functions M
and N of the same degree.

In particular, if M = y* and N = 22 + zy, then M + yN = 2xy? + 2%y = xy(x + 2y) and in accord
with the above statement, the equation

y? z(x +y)

xy(x + 2y) xy(x + 2y)@ =0,

that is, the equation
Y T+y

x(z + 2y) y(x+2y)a‘@ =9,

is exact in a neighbourhood of the point (z,y), such that x # 0, y # 0, and x + 2y # 0. In other words,
there exists function H = H(x,y) such that

oH v
or  x(x +2y)

and
O _ _aty
oy  ylz+2y)

Then we have

y 1 /1 1 1 1
H= | ———d& = — - — dr =1 — -1 2 .
/z<x+2y) +¢(y) 2/(93 er2y) +o(y) = gz = S nfr+ 2y + ¢ (y)
On the other hand,
T L ST
y(x—i—Qy)_@y_ x4+ 2y L
and we have
'(y) = T+y 1 _l
vy _y(x+2y) t+2y vy
e(y) =Inly|,

and ) )
§ln|x|—§ln|x+2y|+ln|y|:0

is the general solution.

12
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Problem 4. Spectral theorem for symmetric operators in FEuclideal spaces. Matrices of
a symmetric operator. Eigenvalues and eigenvectors of a symmetric operator. Spectral
base of a symmetric operator.

Let A and B be two symmetric n X n matrices with real entries which commute, i.e. AB = BA. Prove
that they can be diagonalized simultaneously by the same ortogonal transformation, i.e. there exists an
orthogonal matriz T, such that both matrices T~YAT and T~'BT are diagonal.

Solution:

At the beginning refresh and summarize in your mind the framework
needed:
- Vector spaces and subspaces, linear operators, invariant subspaces
- Figenvalues and eigenvectors, characteristic polynomial and character-
istic roots
- Euclidean space = vector space with a (positive definite) scalar product
over the real numbers R
- Unitary space = vector space with a (Hermitian) scalar product over
the complex numbers C
- Orthonormal base = orthogonal base of unit vectors
- Tramnsition matrix between orthonormal bases
- Orthogonal complement of a subspace
There is no need to duscuss them here in the expose that follows!

Let V be a (finite dimensional) Euclidean/unitary space.

We shall examine linear operators p : V. — V. that satisfy the condition

(%) (p(x),y) = (2,0 (y))

for every pair of vectors z,y € V.

Definition. In case of an Euclidean space we call such operators symmetric,
and in case of unitary space - Hermitian.

Proposition 1. Let V be an Euclidean/unitary space. A linear operator ¢ :
V — V is symmetric/Hermitian, if and only if, for at least one base ey, eq,..., €,
the conditions

(p(ei).e;) = (e, p(e;)) foralli, 7 =1,2,...,n.
hold.

Proof. Based on the linearity of each component of the scalar product the
proof is a direct test for two arbitrary vectors @ = x1e; + x99 + -+ + 2,6, and
Yy =vyie1 +y2€2 + -+ Yn€n.

In case of symmetric map we calculate:

13



AUBG — Spring 2014 Sample State Exam B March 29, 2014

Eigenvalues and eigenvectors of symmetric/Hermitian operators
Theorem 3. Hermitian operators have only real eigenvalues.
Proof . Let V be an unitary space and let o : V.— 'V be a Hermitian operator.
Assume that » € V is an eigenvector related to the eigenvalue A € C, ie.
r # 0 and ¢ (z) = Az. Then we calculate

(p(z),2) = (Az,2) = X(z,2), and (z,¢(x)) = (z,Az) = X (z,2) .

The operator ¢ is Hermitian. which gives A (x.2) = X (z,x) , and because x is
a non-zero vector we get A = \, i.e. A € R.

Next two important results follow immediately from Theorem 3.

Corollary 1. Hermitian matrices have only real characteristic roots, in partic-
ular it holds for symmetric matrices with real entries, as well.

Corollary 2. The characteristic polynomials of symmetric operators have only
real roots, hence every characteristic root of a symmetric operator is an eigenvalue.

FEigenvectors related to distinct eigenvalues
Theorem 4. The eigenvectors of a symmetric/Hermitian operator related to
distinct eigenvalues are orthogonal.

Proof. Let V be an unitary space and let p : V. — V be a Hermitian operator.

Assume that z,y € V are eigenvectors related to distinct eigenvalues A, .
respectively.

Thus ¢ (x) = Az and ¢ (y) = py with 2 £ 0, y 0, A # p. and X\, u € R (by
Theorem 3).

Now we calculate

(o (x),y) = (Az,y) = A(z,y), and (z,¢(y)) = (z,py) = g (z,y) = p(z,y).

The operator is Hermitian which gives A (z.y) = pu (x.y) . hence (A — p) (x.y) =
0 and the latest implies (. y) = 0 because \ # pu.
The proof in case of a symmetric operator is the same.

The main result here is the theorem for diagonalization of symmetric/Hermitian
operators.

Definition. Let V be a vector space over a field F, and let ¢ : V. — V be a
linear operator.

A base ay,as,...,a, of the space is called a spectral base for p, if each of the
basic vectors is an eigenvector of the operator, i.e. ¢ (a;) = A;a; for some \; € F.

14
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Theorem 5. Let V be an Euclidean space (dimV = n), and let ¢ : V =V
be a symmetric operator. Then there exists an orthonormal base of the space.
which is spectral base for ¢.

It means that there c*x1sts a base by.bs. ..., b,, of the spaceV . such that it is

- orthonormal: (b;.0;) = 0 for all 1 < i # j < n, and (b;,0;) = 1 for

- spectral: o (b;) = \;b; for some \; € R, for each i = 1,2,.. ., n.

Proof. (by induction on n = dim V') The base of induction (n = 1) is obvious.

Let us assume the result holds for n — 1. i.e. for every symmetric operator in
a space with dimension n — 1 there exists an orthonormal spectral base.

Now let dimV = n, and let ¢ : V. — V be a symmetric operator.

First, it is clear that there exists at least one eigenvector, say bywith length
‘Z)1| =1:

/Let Ay be a characteristic root of . Then (by Corollary 2) it is an
cigenvalue (A; € R) ., and we can select an (_,13011\-'(*,("‘(“1“ related to Ay, and then
after approprate scaling we get by /

Now we consider the subspaces M = Spann (by) and the orthogonal comple-
ment W = M+,
We have V.= M ¢© W, and because dim M =1, then dimW =n — 1.

It is easy to check that the subspace W is p-invariant, i.e. for each x € W one
has @ (x) € W :
J/if ¥ € W then (x.by) = 0, then (¢ (x).b1) = (z,¢ (b)) = (x,\by) =
A (z, b)) =0/
Next, consider the operator ¢; = @|w, i.e. @1 : W — W and ¢, (z) = ¢ (2)
for each » € W.
It is obvious that ¢y is symmetric:
[for every two vectors z,y in W we have (¢ (z).,y) = (¢(x),y) =

(z,0(y)) = (@01 (y)) /

Thus. by inductive hypothesis there exists orthonormal base of W. which is

spectral for ¢, i.e. orthonormal base b, .. .. b, of W, such that ¢ (b;) = ¢1 (b;) =
Ab; fori=2,. .., n.
In addition (by.b;) = 0 for each « = 2....,n. hence the base by, by..... b, of

V is orthonormal and each of the basic vectors was constructed as an eigenvector
for the operator ¢.

Next results follow immediately from Theorem 5.
Corollary 3. Let V be an Euclidean space (dimV =n), and let ¢ : V =V
be a symmetric operator. Then there exists an orthonormal base of V, where the

15
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matrix of the map  is diagonal with characteristic roots Ay, Aa..... A, on the
diagonal.

Such a diagonal matrix is unique up to reordering of the roots.

Here we may have

Corollary 4. Let A be a symmetric matrix with real entries. Then there exists
an orthogonal matrix 7', such that the matrix D = T" AT is diagonal.

Recall to mind that a given matrix 7" with real entries 1s orthogonal, when
T-!' =T" ie. the transposed of T is the inverse of T.

Let us remind:

For a given eigenvalue Ay of the linear operator ¢ : VV — V the eigenspace
E (Xo) is introduced by E (X)) ={z € V | p () = Xoz}.

Note that in general, if Ay is a characteristic root of the operator ¢ of multi-
plicity myg, then dim £ (Ay) < myg, but in case of symmetric operators we have

Corollary 5. Let ¢ : 'V — V be a symmetric operator, and let Ay be a
characteristic root of ¢ of multiplicity my. 1.e. the characteristic polynomial
o (A) = (A =Xg)™ g(A), with g(Ag) # 0. Then dim E () = my.

Proof. Set up vour own justification of this result.

Comments. It means that for each characteristic root A; of multiplicity m;
we can select a collection of m; linearly independent eigenvectors related to the
eigenvalue A;. They constitute a base of the space E(Ag). Then (say by using
Gram-Schmidt orthogonalization process) we construct a spectral base for the
elgenspace, related to the eigenvalue A;.

16
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( Practical) Problem

Let A and 5 be two symmetric n X n matrices with real entries that commute,
ie. AB = BA.

Prove that they can be diagonalzed simulteneously by the same orthogonal
transformation, 1.e. there exists an orthogonal matrix 7', such that both matrices

T7YAT and T-'BT are diagonal.

Solution.

Let V be an Euclidean space (dim'V = n). Select an orthogonal base of unit
vectors of 'V,

Consider the operators ¢ : V. — V and ¢ : V = V that have matrices (in
that base) A and B, respectively. Obviously AB = BA is equivalent to iy = by,
and both ¢ and ¢ are symmetric operators (Theorem 2).

Every characteristic root Ay of ¢, is an eigenvalue (Corollary 2), and let

E (X)) ={z € V]p(z) =Nz}

be the cigenspace related to Ag, with dim £ (Ag) = mp.

Obviously E (Ag) is @-invariant and the idea of the solution is based on then
key observation that the condition ensures that the space E (g} is ¢>-invariant,
as well. Then the examination of the restrictions of the maps ¢|pn,) and ©] g,

on the space E {\g) allows to construct an orthonormal base of E (Ag) that is
spectral for both operators ¢ and .

In full

Obviously E (Ag) is @-invariant and the map g = @|pp,) 1s a linear operator
wo 1 E(Aa) = E (Ng) . Note that the operator g 1s a scalar map, 1e. p (z) = Aoz
for every x € E (\g) . L.e. any base of E () is spectral base for the map .

Next, the space E (Ag) is also t-invariant: for every x € E (Ag) we have

o (x)) =pt(z)=1tp(z) =(p(x) = (Nox) = Aot (z).

The latest show that the vector y = o (x) satisfies ¢ (y) = Agy. hence y €
E(Ag).

Now the map 1y = | gny) s a symmetric linear operator ¢y : E (Ag) = E (Ag)
and by Theorem 5 there exists orthonormal base of E (Ag) that is spectral for 1.

And it is spectral for ¢q, as well!
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Now, let A\, A\g, ... A, be all distnet characteristic roots of the operator ¢ with
multiplicities my, mo, ..., my, respectively. Obviously my+---+my = n (= degree
of the characteristic polynomial of ).

With each A; we constructed an orthonormal base of the eigenspace E (A;) that
is spectral for both ¢ and @, and we have m; vectors in that base (Corollary 5).

In addition, the vectors that belong to different eigenspaces are orthogonal
(Theorem 4).

At the end the union of the bases we constructed for each eigenspace is or-
thonormal collection of n vectors in V (with dim V = n), therefore it is a base we
need.
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